Superbubble Feedback in Galaxy Formation

Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman

Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman 2014

Background Image: High-resolution simulation of Milky Way like galaxy using superbubble feedback. Outflows with entrained cold clouds can be observed.

Stellar Feedback: Motivation

- Feedback from Massive stars: *metals, energy, momentum* through Winds, UV, SN_{II}
- FB regulates star formation, ISM structure

FB-driven Galactic winds:

- Remove gas from disk, enrich IGM with metals
- Set final stellar mass

M82

Image: HST, NASA/ESA

Superbubble Feedback: Motivation

N70 Superbubble LMC Image: ESO D 100 pc Age: 5 Myr v ~ 70 km/s Driver: OB assoc. 1000+ stars

- Massive star formation highly correlated in time and space
- Typical star cluster
 ~ 10,000 M_o forms in ~10
 pc over < 1 Myr
- ⇒ Stellar Feedback highly correlated
- ⇒ Natural unit of feedback is a <u>superbubble</u> combining feedback of 100+ massive stars

Super bubble features

Classic model:

- Stellar winds + supernovae shock and thermalize in bubble
- Negligible Sedov-phase
- Mechanical Luminosity L=10³⁴ erg/s/M₀
- Much more efficient than individual SN (e.g. Stinson 2006 Blastwave feedback model)

MacLow & McCray 1988, Weaver+ 1977, Silich+ 1996

Super bubble features

Limiting factor:

Radiative Cooling of bubble determined by bubble temperature ~ E_{th}/M_b and density M_b/R^3

Hot bubble mass (M_b) set by thermal conduction rate into bubble

MacLow & McCray 1988, Weaver+ 1977, Silich+ 1996

Modeling Superbubbles

- Key physics: Thermal Conduction
 Without conduction bubble mass = ejecta mass
- Evaporation resulting from conduction hard to resolve directly
- 3. Low resolution, early bubble stages:

M_b < M_{particle} – need to avoid overcooling

1. Thermal Conductivity

$$\frac{\partial E}{\partial t} = \nabla \left(\kappa_{Cond} \nabla T \right) \qquad \kappa_{Cond} = 6 \times 10^{-7} T^{5/2} (\text{cgs})$$

- Self regulating Energy flux ~ T^{7/2}/R (T > 10⁵ K)
- Flux limited by electron speeds (Cowie & McKee 1977)
- Note: κ reduced by 3-5 by Magnetic Fields
- For sharp temperature contrast, drives evaporative mass flux from cold into hot gas

2. Evaporation

 Evaporation front width < 0.1 pc !

Subgrid model:

- Based on MacLow & McCray 1988 rate estimate
- SPH implemention: Stochastically evaporate particles into hot bubble from cold shell
- Applied for T > 10⁵ K particles
- Regulates bubble temperature

$$\frac{\partial M}{\partial t} = \frac{16 \pi \mu}{25 k_{b}} \kappa_{0} T^{5/2}$$

3. Low Resolution : Subgrid Hot Phase

- For a poorly resolved bubble, M_b < M_{particle} for the early stages
- Temporary 2-phase particle while injection/conduction grows mass of bubble phase
- No numerical/resolution related overcooling
- Feedback-heated particles briefly contain 2 phases in pressure equilibrium, with separate densities and temperatures
 - Each cools independently.

Implementation:

- N-body Solver (Tree Method) and Smoothed Particle Hydrodynamics
- Physics: Gravity, Hydrodynamics, Atomic Chemistry (Radiative Heating, Cooling), Radiative Transfer (Woods et al, in prep)
- Subgrid Physics: Star Formation, Turbulent Diffusion

High Resolution Superbubble Simulation

Mass loading

Bubble mass, temperature regulated:

Test 30,000 M_o cluster: 3 cases

Direct Injection: Resolved stellar ejecta mass, no subgrid required ($M_{particle}$ =760 M_{\odot} at 128³), conduction + evaporation

Superbubble: conduction, evaporation + subgrid **Simple Feedback**: A non-cooling phase with conversion time 5 Myr to cooling form (cf. Agertz+ 2013)

Bubble Momentum + Hot Mass

Simple Model resolution sensitive

 Superbubble Model still works with a 1 particle bubble (32³ case)

Galaxy Tests

Similar to Dalla Vecchia & Schaye (2012) --MW analogue ($M_{gas} \sim 10^9 M_{\odot} N_{gas} = 10^5$) & Dwarf

MW & Dwarf Star Formation

- Star formation rates regulated. Bursty as expected in dwarf
- Higher mass loading
- Outflow evolution similar to Dalla Vecchia & Schaye 2012
- Note: dwarf has low surface density
- Kennicutt-Schmidt law matched

Galaxies: SFR & Outflows

Temperature-Density Phase space

Particles split into cold dense + hot rarefied phases Rapidly become hot, single phase – evolve adiabatically

Summary

- Superbubble is relevant scale for stellar feedback in galaxies
- Thermal conduction is dominant physical process in superbubble evolution
- Taking this into account gives you a powerful model for feedback:
 - Separating Cold & Hot phases in unresolved superbubble prevents overcooling
 - Feedback can be continuous, multi-source
 - Feedback gas doesn't persist in unphysical phases
 - Star formation is strongly regulated, winds are driven with realistic mass loadings
- Read the Paper:
 - astro-ph/1405.2625 (Accepted MNRAS)
 - Keller, Wadsley, Benincasa & Couchman 2014

Stellar Feedback Budget

- UV & Radiation pressure disrupt dense clouds
 - Denser gas (>10⁴ H/cc) dispersed, star formation cut off
- SN_{II} and stellar winds
 Steady 10³⁴ erg/s/M_o
 for ~ 40 Myr

Super bubbles: Vishniac Instabilities

X/pc

Nirvana simulations 3 star bubble Krause et al 2013

Theory: Vishniac 1983 Sims: McLeod & Whitworth 2013, Nayakshin+ 2012 (AGN)

Super bubbles: X-Ray Observations

Table 1. Physical Properties of Hot Gas in Bubble Interiors

Bubble Type	$rac{T_{ m e}}{[10^6~{ m K}]}$	$N_{ m e} \ [{ m cm}^{-3}]$	$L_{\rm X}$ [erg s ⁻¹]	
Orion Bubble WR Bubble	2 1-2	0.2–0.5	$\frac{5 \times 10^{31}}{10^{33} - 10^{34}}$	Chu 2
M17 Superbubble Planetary Nebula	1.5, 7 2 -3	$\begin{array}{c} 0.3 \\ 100 \end{array}$	$\frac{3.4 \times 10^{33}}{10^{31} - 10^{32}}$	800

- X-Ray luminosity highly variable over space, time
- Very few observations, large scatter in observed L_x
- Leaking of interior, Bfield amplification in shell may explain some reduced luminosities (see Rosen+ 2014)

Clumpy medium

Direct Injection

Superbubble Feedback Model

Simple Feedback Model

Clumpy Medium

Some changes in bubble mass/momentum

Agreement with direct model still good

Reduced Conduction & Magnetic Fields

- Conduction suppressed across magnetic field lines
- 100x reduction in conduction rate κ₀ results in only factor of ~2 reduction in M_b

Multiphase Properties

Median time as mixed-phase particle < 5 Myr

Coming Soon... Cosmological Galaxy (now z=2)

9.6

- ~ 10¹¹ Msun halo
- So far on track for reasonable M *