Accretion, Buoyancy, and Chaos: ABCs of Galaxy Formation

Ben Keller Universität Heidelberg

Diederik Kruijssen, James Wadsley, Samantha Benincasa, Hugh Couchman, Liang Wang

European Research Council Established by the European Commission

Outflows, Buoyancy, and Chaos: OBCs of Galaxy Formation

Ben Keller Universität Heidelberg

Diederik Kruijssen, James Wadsley, Samantha Benincasa, Hugh Couchman, Liang Wang

European Research Council Established by the European Commission

L* Galaxies are Neat

MUGS2: 18 L* Galaxies

- Cosmological zoom-in simulations, run using GASOLINE2 (Wadsley+ 2017), in a WMAP3 cosmology
- Initial conditions identical to MUGS (Stinson+ 2010), run with "classic" SPH and blast-wave feedback
- Virial Masses range from 3.7x10¹¹ to 2.1x10¹²M_{sun}
- Variety of merger histories, spin parameters
- 320pc softening, baryon mass resolution of 2.2x10⁵M_{sun}

MUGS2: 18 L* Galaxies

Keller+ 2016

Feedback Models Matter!

- 4 test cases:
 - No Feedback
 - Blastwave (Stinson+ 2006) feedback
 - Superbubble Feedback
 - Superbubble Feedback 2X Energy

- g1536
 - 8x10¹¹ M_{sun} virial mass
 - Last major merger at z=4
 - Equal SN energy for Blastwave and Superbubble
 - Details in Keller+ 2015

Superbubble Feedback

- Hot bubble is heated by multiple SN
- As bubble expands, forms a cold & radiative shell
- Shell is evaporated by thermal conduction

$$\frac{\partial M_B}{\partial t} = \frac{4\pi\mu}{25k_B}\kappa_0 T^{5/2}A_B$$

Correct Stellar Mass, Small Bulge

Superbubbles drive outflows well

High-z outflows prevent bulges, preserve disks

High-z outflows prevent bulges, preserve disks

Moster+ 2010

Moster+ 2010

Moster+ 2010

Answer: No!

Mass loading has universal scaling

- Mass-loading begins to fall from ~10 when disc is ~10¹⁰M_{sun}, halo is ~2x10¹¹M_{sun} to << 1 in halos above ~10¹²M_{sun}
- SDSS observations find powerful AGN kick in here!
- Dubois+ 2015 simulations found AGN regulation began at 280 km/s bulge v_{esc} at high z

How Gas Moves Through the CGM

- Do outflows escape the halo?
 - Wind vs. Fountain
- Are they driven by energy, momentum, or something else?
- How does accreted material interact with outflowing material?

What Governs CGM Flow?

- Physics at work
 - Energy/Momentum injected by FB
 - Gravity/Accretion Shock
 - Hydrodynamic Drag
 - Radiative Cooling
 - Buoyancy
- Buoyancy can add OR remove radial momentum!

- Critical Timescales
 - Cooling t_{cool}
 - Gravitational Freefall t_{ff}
 - Brunt-Väisälä t_{buouy}

What Governs CGM Flow?

- Physics at work
 - Energy/Momentum injected by FB
 - Gravity/Accretion Shock
 - Hydrodynamic Drag
 - Radiative Cooling
 - Buoyancy
- Buoyancy can add OR remove radial momentum!

- Critical Timescales
 - Cooling t_{cool}
 - Gravitational Freefall t_{ff}
 - Brunt-Väisälä t_{buouy}

Buoyancy is all about Entropy!

"Entropy" Entropy

$$K = k_B T n^{-2/3}$$
 $\Delta S = \Delta \ln(K)$

Schwarzchild Criterion

$$\frac{\partial S}{\partial r} > 0$$

Brünt-Väisälä Frequency

$$\omega = \sqrt{\frac{3}{5}} \nabla \phi \nabla S$$

Keller+ 2018b, in prep

Buoyancy determines flow direction

Keller+ 2018b, in prep

Entropy-Driven Fountains

Keller+ 2018b, in prep

EoM for Entropy-Driven Fountains

Keller+ 2018b, in prep

Can We Derive the Entropy of a SB?

Superbubble Density $n_{SB} = 9.6 \circ 10^{-3} cm^{-3} L_{38}^{6/35} n_0^{19/35} t_7^{-22/35}$

Superbubble Temperature

Superbubble Radius

$$T_{SB} = \frac{10\,\mu\,m_p}{33\,k_B\,m_{SB}}\,L\,t$$

$$R_{SB} = 267 \, pc \, L_{38}^{1/5} \, n_0^{-1/5} \, t_7^{3/5}$$

Weaver+ 1977, Mac Low & McCray 1988

Superbubble Entropy

Entropy at breakout (R~h)

$$K_{SB} = 5.84 \, keV \, cm^2 \left(\frac{h}{267 \, pc}\right)^{26/36} L_{38}^{2/63} n_0^{-14/63}$$

Halo Entropy

$$K_{vir} = 30.06 \, keV \, cm^2 \left(\frac{M_{vir}}{10^{12} \, M_{sun}}\right)^{2/3}$$

Keller+ 2018b, in prep

Integrating the Buoyant EoM

Buoyant Outflows Recycle Slowly!

Keller+ 2018b, in prep

Buoyancy determines recycling time

A "Reproducibility Crisis" In Numerical Astrophysics?

Monya Baker, Nature News, 2016

How Sensitive Are Galaxy Properties to Small Perturbations?

- N-Body Chaos
- Infinitesimal Initial Condition Perturbations
- Random Number Generator seeds
- Poisson Noise
- Floating Point Roundoff

Chaos Rules Everything Around Me

the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets ~3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.

Using the JADE supercomputer at the French National Computing Centre CINES, we integrated 2,501 orbital solutions, S_k , of the complete model over 5 Gyr, with the initial semi-major axis of Mercury differing by 0.38k mm ($k \in [-1,250, 1,250]$) from that in the nominal solution, S_0 , which was adjusted to the planetary ephemeris INPOP06¹⁷. The results (Fig. 1b and Supplementary Table 1b) are comparable to those of the relativistic secular equations², with Mercury having a high eccentricity in about 1% of solutions.

Laskar & Gastineau 2009

Chaos is Important in Protoplanetary Discs: Why Not Galactic Discs?

Hoffmann+ 2017

Chaos is Universal!

Isolated Dwarf Galaxy

Cosmological MW Zoom

- All codes
- All subgrid feedback models
- All initial conditions
- See also Genel+ 2018

Feedback & Gas Exhaustion Constrain Stochasticity

Feedback: Self-Regulation

Starbursts & Mergers Pump Chaos

Temporal ~ Numerical Stochasticity

Temporal ~ Numerical Stochasticity

Run-to-Run Variation

Step-to-Step Variation

Keller+ 2018a, submitted

 10^{1}

- Highly mass-loaded outflows, especially at high-z, are essential to forming realistic L* galaxies
 - These outflows *cannot* be driven by SN alone in halos more massive than 10¹² M_{sun}
- Entropy-driven winds, driven by buoyancy, behave quite differently than ballistic outflows
 - Gentle acceleration, low velocities
 - Long recycling times
 - Halo entropy exceeds superbubble entropy near 10¹² M_{sun}, halting outflows
- Galaxy evolution involves chaotic physics: small-scale stochasticity can pump large-scale changes