
  

Accretion, Buoyancy, and Chaos: ABCs 
of Galaxy Formation

Ben Keller
Universität Heidelberg

Diederik Kruijssen, James Wadsley, Samantha Benincasa, Hugh 
Couchman, Liang Wang



  

Outflows, Buoyancy, and Chaos: OBCs 
of Galaxy Formation

Ben Keller
Universität Heidelberg

Diederik Kruijssen, James Wadsley, Samantha Benincasa, Hugh 
Couchman, Liang Wang





  

MUGS2: 18 L* Galaxies
● Cosmological zoom-in simulations, run using 

GASOLINE2 (Wadsley+ 2017), in a WMAP3 
cosmology

● Initial conditions identical to MUGS (Stinson+ 2010), 
run with “classic” SPH and blast-wave feedback

● Virial Masses range from 3.7x1011 to 2.1x1012Msun

● Variety of merger histories, spin parameters
● 320pc softening, baryon mass resolution of 

2.2x105Msun

Keller+ 2016
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Feedback Models Matter!
● 4 test cases:

– No Feedback

– Blastwave (Stinson+ 2006) 
feedback

– Superbubble Feedback

– Superbubble Feedback 2X Energy

● g1536
– 8x1011 Msun virial mass

– Last major merger at z=4 

– Equal SN energy for Blastwave 
and Superbubble

– Details in Keller+ 2015

Keller+ 2015



  

Superbubble Feedback
● Hot bubble is heated 

by multiple SN
● As bubble expands, 

forms a cold & 
radiative shell

● Shell is evaporated by 
thermal conduction 

∂M B

∂ t
=

4πμ

25 kB

κ0T
5 /2 AB

Keller+ 2014



  

Correct Stellar Mass, Small Bulge

Stellar Mass Evolution
Matches Behroozi+ 2012 
abundance matching

Flat rotation curve == no 
major bulge component
(B/T ratio of 0.09 vs. 0.46, 
MW B/T ~0.14)

Halo Mass
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Superbubbles drive outflows well

Keller+ 2015



  

High-z outflows prevent bulges, 
preserve disks 

Keller+ 2015



  

High-z outflows prevent bulges, 
preserve disks 

Bulge Forming Gas

Disk 
Forming
Gas

Keller+ 2015



  

Can Supernovae do it all?

Moster+ 2010
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Can Supernovae do it all?

Answer: No!
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Mass loading has universal scaling
● Mass-loading begins to fall 

from ~10 when disc is 
~1010Msun, halo is 
~2x1011Msun to << 1 in 
halos above ~1012Msun

● SDSS observations find 
powerful AGN kick in here!

● Dubois+ 2015 simulations 
found AGN regulation 
began at 280 km/s bulge 
vesc at high z
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Keller+ 2016



  

How Gas Moves Through the CGM
● Do outflows escape 

the halo?
– Wind vs. Fountain

● Are they driven by 
energy, momentum, or 
something else?

● How does accreted 
material interact with 
outflowing material?  



  

What Governs CGM Flow?
● Physics at work

– Energy/Momentum 
injected by FB

– Gravity/Accretion Shock

– Hydrodynamic Drag

– Radiative Cooling

– Buoyancy

● Buoyancy can add OR 
remove radial 
momentum!

● Critical Timescales
– Cooling tcool

– Gravitational Freefall tf

– Brunt-Väisälä tbuouy

Feedback

Gravity

Drag

Cooling
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Buoyancy is all about Entropy!

K=kBT n−2/3 Δ S=Δ ln(K )

∂ S
∂r

>0

“Entropy” Entropy

Schwarzchild Criterion Brünt-Väisälä Frequency

ω=√ 3
5

∇ ϕ∇ S

Keller+ 2018b, in prep



 

Buoyancy determines flow direction

Keller+ 2018b, in prep



  

Entropy-Driven Fountains

Keller+ 2018b, in prep



  

EoM for Entropy-Driven Fountains

Buoyancy

Gravity

Drag

Keller+ 2018b, in prep

r̈=∇ ϕ



  

Can We Derive the Entropy of a SB?

nSB=9.6∘10−3cm−3 L38
6 /35n0

19/35 t7
−22/35

Superbubble Density

Superbubble Temperature

T SB=
10μm p

33kBmSB

Lt

Superbubble Radius

RSB=267 pc L38
1 /5n0

−1 /5 t7
3 /5

Weaver+ 1977, Mac Low & McCray 1988



  

Superbubble Entropy

K SB=5.84 keV cm2
(

h
267 pc

)
26 /36

L38
2/63n0

−14 /63

Entropy at breakout (R~h)

Halo Entropy

K vir=30.06 keV cm2( M vir

1012 M sun
)
2 /3

Keller+ 2018b, in prep



  

Integrating the Buoyant EoM



  

Buoyant Outflows Recycle Slowly!

Entropy-DrivenEnergy-Driven

Keller+ 2018b, in prep



 

Buoyancy determines recycling time



  

A “Reproducibility Crisis” In 
Numerical Astrophysics?

Monya Baker, Nature News, 2016



  

How Sensitive Are Galaxy Properties 
to Small Perturbations?

● N-Body Chaos
● Infinitesimal Initial Condition Perturbations
● Random Number Generator seeds
● Poisson Noise
● Floating Point Roundof



  

Chaos Rules Everything Around Me

Laskar & Gastineau 2009



  

Chaos is Important in Protoplanetary 
Discs: Why Not Galactic Discs?

Hoffmann+ 2017



  

Chaos is Universal!

Isolated Dwarf Galaxy Cosmological MW Zoom

● All codes
● All subgrid feedback models
● All initial conditions
● See also Genel+ 2018

Keller+ 2018a, submitted
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Feedback & Gas Exhaustion 
Constrain Stochasticity

No Feedback:
Gas Exhaustion

Feedback:
Self-Regulation
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Keller+ 2018a, submitted



 

Starbursts & Mergers Pump Chaos
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Temporal ~ Numerical Stochasticity
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Keller+ 2018a, submitted



  

Temporal ~ Numerical Stochasticity

Run-to-Run
Variation

Step-to-Step
Variation

Keller+ 2018a, submitted



  

What does “simulation” mean?

Configuration Space

Final
StateInitial

Conditions
Sim

ulatio
n

Model 1
Model 2

Keller+ 2018a, submitted
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Conclusions
● Highly mass-loaded outflows, especially at high-z, are 
essential to forming realistic L* galaxies
– These outflows cannot be driven by SN alone in halos more 

massive than 1012 Msun

● Entropy-driven winds, driven by buoyancy, behave quite 
diferently than ballistic outflows
– Gentle acceleration, low velocities

– Long recycling times

– Halo entropy exceeds superbubble entropy near 1012 Msun, 
halting outflows 

● Galaxy evolution involves chaotic physics: small-scale 
stochasticity can pump large-scale changes

Read M
y Papers

Here :)
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